Experimental Investigation of Compound Effect of Flexural and Torsion on Fiber-Reinforced Concrete Beams
نویسندگان
چکیده
Fiber-reinforced concrete is widely acknowledged for its ability to resist cracking effectively and limit propagation. By preventing cracks from spreading, the addition of fiber composites can enhance extensibility tensile strength, not only at initial point but also maximum capacity. Additionally, fibers in fiber-reinforced are capable binding matrix, even when exposed significant cracking. However, there limited information available about behavior under a bending moment combined with torsion. This study aims investigate structural members subjected torsion ratio equal 1. Synthetic steel 1.0% content different lengths (19, 35, 55 mm synthetic 13 straight hook fibers) were mixed mixtures examine effects types on beam performance. Test results indicated that beams showed higher moments than normal-strength beam. The hooked configuration reinforced increased capacity total torsional toughness length exhibited highest first-crack ultimate values among other tested beams. test compared past research models compound effect we modified these another factor represented influence capacity, as suggested research. comparison between predicted model presented good correlation.
منابع مشابه
Experimental Investigation of Behavior of Glass Fiber Reinforced Concrete (GFRC)
The paper presents the results of casting and testing of 264 GFRC specimens. The glass fibers were 25 mm long, with the aspect ratio (L/D) ranging between 1250 and 3570. The parameters studied were the ratio (by weight) of fibers to cement, i.e. F/C=0%, 1.5%, 3%, and 4.5%, and the ratio of coarse to fine aggregates (gravel to sand), i.e. G/S=1.1, 0.7 and 0.2. In total, 12 mix designs were selec...
متن کاملExperimental Investigation of Behavior of Glass Fiber Reinforced Concrete (GFRC)
The paper presents the results of casting and testing of 264 GFRC specimens. The glass fibers were 25 mm long, with the aspect ratio (L/D) ranging between 1250 and 3570. The parameters studied were the ratio (by weight) of fibers to cement, i.e. F/C=0%, 1.5%, 3%, and 4.5%, and the ratio of coarse to fine aggregates (gravel to sand), i.e. G/S=1.1, 0.7 and 0.2. In total, 12 mix designs were selec...
متن کاملFlexural Cracks in Fiber-Reinforced Concrete Beams with Fiber-Reinforced Polymer Reinforcing Bars
Fiber-reinforced polymer (FRP) reinforcing bars have aTtracted considerable 0llellli0l1 for applications where corrosion of steel reinforcement is problemaric. Due 10 rhe generally low elastic modulus and poor bond clwracreristics of FRP as coil/pared 10 steel reinforcing bars, the use of FRP results in IGI:i?er crack widlhs under senJice loads. Fiber-reinforced concrete (FRe) is proposed for u...
متن کاملFlexural Behavior of Lightweight Concrete Beams Reinforced with GFRP Bars and Effects of the Added Micro and Macro Fiber
This study evaluated the effect of macro steel fiber (SF), micro glass fiber (GF) and micro polypropylene fiber (PF) in lightweight aggregate concrete, (LWAC) beams reinforced with glass fiber reinforced polymer (GFRP) bars. Firstly, concrete mixtures with different volume fractions of GF, PF and SF were tested up to compressive strength, then determine the optimum fiber content GF, PF and SF a...
متن کاملExperimental Investigations on The Flexural Strength of PET Reinforced Concrete
Due to the rapid industrialization taking place globally, the problems generated are acute shortage of construction material and increasing in productivity of wastes. The production and consumption of plastic and the rate at which solid plastic waste (SPW) are created have increased considerably. Plastics constitute 12.3% of total waste produced most of which is from discarded water bottles. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Buildings
سال: 2023
ISSN: ['2075-5309']
DOI: https://doi.org/10.3390/buildings13051347